
Introduction
The TIBCO FX Dealing Accelerator is a reusable set of software components that provide TIBCO FX
customers a fast start to deploying FX Market Data and FX Dealing solutions. The FX Dealing
Accelerator is available to TIBCO customers as a package of TIBCO StreamBase EventFlow™ source
code with TIBCO® Live Datamart table definitions and a sample JavaScript user interface, to be
used as a starting point for your customization. The primary components of the FX Dealing
Accelerator are:

• A working subset of the TIBCO Trading Components Framework that provides FX venue
connectivity, venue handlers and execution handlers. Using TIBCO StreamBase Studio™,
connectivity to FX venues is achieved by drag and drop functionality. The associated venue
handler is automatically configured and is ready to consume fast market data.

• FX Pricing Aggregation: As market data is ingested from the configured venues, it is passed
through an aggregation interface that generates a price. This price is used for tiering and
customized spreading. Initial spreads are loaded at startup but can be changed at runtime,
enabling dynamic price calculation.

• Pricing subscriptions are registered by the Accelerator and are serviced at specified intervals.
This guarantees full control of downstream message rates.

• Price Distribution: Prices are distributed via a TIBCO® Live Datamart interface. This provides
ad-hoc query support for the FX Dealing user interface. The prices are also available to the Live
Datamart JavaScript API, and a sample HTML5 trading user interface is included. (Other
distribution options include: TIBCO EMS, TIBCO FTL, TIBCO RV, Thomson Reuters RMDS, Solace
Systems, Tervela, Wombat, or 29West.)

• Execution Handling: Trade reporting and Real Time Profit and Loss are implemented, and this
data is available in the provided Live Datamart data tables and in a sample HTML5 user
interface. Positions can be monitored and also sent downstream for clearing and further
processing. (Trades are executed against a simulator. When extending the accelerator to a live
environment, you must remove the simulator and route the trades to a live execution handler.)

• Sample JavaScript Pricing and Trading User Interface: The FX Dealing user interface is a sample
user interface for FX Dealing, built in JavaScript and HTML5. The sample provides a visual
representation of aggregated FX market data, FX price spreads, top of book, and a point-and-
click interface to set FX prices for an FX dealer. The user interface is intended to be extended by
TIBCO customers and is provided as a fast start.

Running The FX Dealing Accelerator
1. Open the Studio Preferences dialog. In the menu:StreamBase Studio[Test/Debug] panel, make

sure the Try another random port option is selected.

(On Windows, open the Preferences dialog with menu:Window[Preferences] . On the Mac, use
menu:StreamBase Studio[Preferences] .)

2. Run the Accelerator as a Live Datamart project. This is done in one of two ways:

1

[loweralpha].. From the LiveView Project Viewer: The Project Viewer opens by default when
you load the Accelerator into Studio. Select the tab for the Project Viewer, which bears the name
of the project as seen in the Package Explorer view. Click the green Run button in the upper
right corner of the Project Viewer.

(If the Project Viewer is not open, right-click the project’s name in the Package Explorer view
and select Open LiveView Project Viewer .) .. In the Package Explorer view, select the
sample_Frameworks_TradingComponents_fxpricing project, right-click, and from the context
menu, select menu:Run As[StreamBase LiveView Project] .

3. The Console view shows several messages as the LiveView Server compiles the project and
starts. Wait until the following console message appears before proceeding to the next step: All
tables have been loaded. LiveView is ready to accept client connections.

4. Open a web browser and navigate to http://localhost:10080/angular-
sample/FX_Dealing_Accelerator.html .

5. In the Package Explorer view, open the sample_Frameworks_TradingComponents_fxpricing
project, then double-click to open the FXPricing.sbapp . Make sure the application is the
currently active tab in the EventFlow Editor.

6. From Studio’s top-level toolbar, click the Run button. This opens the SB Test/Debug
perspective and starts the application. You can send test tuples to this application in the Manual
Input view. Tuples sent connect to the Live Datamart server in query form.

7. In the Application Output view, observe tuples emitted on the LVStatus stream, which give
details about the connection to the Live Datamart server.

8. When done with the StreamBase application, press kbd:[F9] or click the Stop StreamBase
Application button to stop the FXPricing.sbapp application.

9. When done with the Live Datamart application, press (on the Mac) or click the red and blue
Stop LiveView Server button to stop the Live Datamart application.

FX Pricing Using VWAP Trading Components
Sample
* About The Sample*

This sample demonstrates how to generate custom Bid-Ask price ladders from Blended Depth of
Book market data using the Volume Weighted Average Price. The sample also features a
Subscription Manager that can be used to send data downstream to clients at specified time
intervals and an Execution Manager that performs real time Profit/Loss calculations. In this sample
application we have two FX Market Data providers configured: FXSpotStream and Deutsche Bank
AutobahnFX Rapid.

2

http://localhost:10080/angular-sample/FX_Dealing_Accelerator.html
http://localhost:10080/angular-sample/FX_Dealing_Accelerator.html

Reading the sample from left to right, we have an initialization phase containing the module
reference FXSetup. In this module the application loads:

• inital_spread.csv: This file contains the initial spread settings for each customer Tier and
Volume Band. An example row is: EUR,USD,A,1M,4. This tells the spread calculations to apply 4
pips (pip = 1/10000th unit) to the current market mid price.

• initial_subscriptions.csv/preferences: This file contains a list of subscriptions for a set of
currency pairs, and a determined Tier. This means that different subscriptions can have, if
desired, different spreads for the same currency pair. The preferences file also specifies a
desired publishing rate.

• initial_executions.csv: This file contains a set of trade execution messages that can be used to
pre-populate the application at start up. If this is not desired then the contents of this file should
be deleted at startup.

Continuing right to left the subscriptions are sent to the MarketSimulator and the
SubscriptionManager. The market simulator will now generate price data for the currency pairs
requested.

Moving onto the PriceCalculation we meet an example of an ExtensionPoint,
FXPriceAggregation.sbint. This is an interface with the implementation in this case of a VWAP

3

calculation to obtain an weighted average of the current market data update message. When using
this sample to build more complex trading systems, this implementation can be replaced or
augmented to achieve the desired method of price generation. This price forms the bases of the
Tiered prices that are derived in CustomSpreadCalulator. In this module prices are generated in
compliance with the spread that were loaded at start time. It’s important to note here that these
spreads may be changed at runtime by enqueuing an event to
*FXPricing.WorkingProcessor.FXSetup.ManualSpreadUpdate. * When this event is sent, the spreads
for the currency pair are re-calculated, and will be published subsequently.

In Client Management there are basic implementations of real time Profit and Loss, and
Subscription Management. ExecutionManager.sbapp provides an example of how to calculated
profitability on trades executed real-time, and updated as each market data tick is processed.
SubscriptionManager.sbapp a simple example of how subscriptions are cached and serviced on
market data events. A suggested evolution of this module would potentially use heart beating with
the Client Subscription to manage the subscription life cycle.

The final stage of our sample application is the output stage. In this example we use the TIBCO Live
Datamart to distribute our prices to the sample JavaScript trading user interface. Once the data is
published to the Live Datamart tables is is available for ad hoc querying and charting through both
the JavaScript API and the LiveView Desktop client. It is intended that this user interface can be
used as a starting point to build a customized trading application.

4

Live Datamart Table Schemas
The Accelerator uses Live Datamart data tables to hold the current prices for distribution and the
current set of executed trades. There is another lvconf file in the project, FXPricing.lvconf , which is
used as a launcher for the combined StreamBase and Live Datamart project.

The Live Datamart data tables are MarketDataSample.lvconf and ExecutionDataSample.lvconf ,
which are used with an aggregation table ExecutionDataAgg.lvconf . The schemas for the data tables
and aggregation table are as follows:

Table 1. MarketDataSample.lvconf

Field Name Data Type Description

Time timestamp Timestamp when the price was
generated in the Aggregator.

ClientID* string A unique identifier
representing each client
subscribing for prices.

Currency1* string The base currency of the pair.

Currency2* string The second currency of the
pair.

Tier* string The tier the customer is in. This
will determine the spread
values they receive.

Volume* string The volume band this price
represents.

Bid double The Bid price for this volume
band.

Ask double The Ask price for this volume
band.

_ Fields marked with an asterisk denote primary keys._

Table 2. ExecutionDataSample.lvconf

Field Name Data Type Description

TradeID* string A unique identifier
representing the trade.

ClientID string A unique identifier
representing the client whom
we have traded with.

Currency1* string The base currency of the pair.

Currency2* string The second currency of the
pair.

5

Field Name Data Type Description

Tier* string The tier the customer is in. This
will determine the spread
values they receive.

Volume* string The volume band this price
represents.

Bid double The price at which a client can
sell.

Ask double The price at which a client can
buy.

ExercisedPrice double The price at which the trade
was executed.

PL double The profit or loss achieved by
the client on this trade. This is
re-calculated as the market
price changes.

Side string Either "Long" for a buy, or
"Short" for a sell.

ExecutionTime timestamp Timestamp when the trade was
accepted.

_ Fields marked with an asterisk denote primary keys._

Table 3. ExecutionDataAgg.lvconf

Field Name Data Type Description

CurrencyPair String Currency1 + Currency2, such as
GBPUSD.

AggQuantity Double Aggregate of traded quantity.

AggPosition Double Aggregate of traded position,
such as P and L.

FX Dealing Sample User Interface
TIBCO Live Datamart provides a JavaScript API to view and interrogate the pricing and trade data.
A sample Pricing/Trading user interface is provided as a fast start. The Live View Desktop is also
availa2ble to create ad-hoc continuous queries and charts. Alert rule creation is achieved using the
Live View Web user interface (http://localhost:10080/lv-web/index.html#/manager) or LiveView
Desktop. In the sample provided there are three main screens: FX Dealing, Real Time Profit and
Loss and a Configuration tab. This web user interface is built using the Component Exchange
LiveView Angular Bridge and DataMart. On the main trading screen the green and red tiles are the
current bid and ask prices. Clicking on these tiles pops up a modal dialog where the user selects the
quantity they wish to buy or sell. These trades are then stored in the Live Datamart table

6

http://localhost:10080/lv-web/index.html#/manager

ExecutionDataSample.

Market Simulator
The sample uses the Market Simulator module to provide realistic Blended Depth of Book market
data for any currency pair in the initial_subscriptions.csv file located in the init_files folder. New
subscriptions can be added during runtime via the Subscription Request input stream.

Execution Simulator
The sample uses the Execution Simulator module to provide realistic Market Order Execution
simulation. On start up, initial executions are loaded from the initial_executions.csv file located in
the init_files folder. New executions can be added during runtime via the Execution Request input
stream. The Executions table generated inside of the Execution Simulator module can be accessed
outside of the handler for querying and sorting.

FX Price Aggregation
The FX Price Aggregation interface takes Blended Depth of Book market data and outputs an
aggregated Bid and Ask price.

Volume Weighted Average Price
Volume Weighted Average Price (VWAP) is a method of computing a weighted average of an
aggregated price book. The Bid VWAP is calculated as the sum of the products of the Bid prices with
their respective quantities divided by the total quantity of Bids. The VWAP for Asks is calculated
analogously. The VWAP Calculator module is an implementation of the FX Price Aggregation
interface and computes aggregated Bid and Ask prices as the VWAP Bid and VWAP Ask. Note that in
practice the VWAPCalculator can be swapped for any module implementing the
FXPriceAggregation interface.

7

Mid Price Calculator
The Mid Price Calculator module takes an aggregated Bid price and an aggregated Ask price and
computes the Mid Price as the average of the two. In this sample, the Mid Price is calculated as the
average of the Bid VWAP and the Ask VWAP.

Custom Spread Calculator
A spread ladder is created by adding small displacements (pips) to the Mid Price based on Band and
Volume. For a given Mid Price and a fixed Band and Volume, the custom Bid price is calculated as
the Mid Price minus 0.005% of the pip value, and the custom Ask price as the Mid Price plus 0.005%
of the pip value. The Custom Spreads table generated inside of the Custom Spread Calculator
module can be accessed outside of the handler for querying and sorting. In the sample, the spread
ladder is generated using the spread preferences specified in the initial_spreads.csv file located in
the init_files folder. Note that in practice the Spread Preferences can be assigned via an input
stream and need not be fixed.

Subscription Manager
The Subscription Manager module accepts client subscription requests for a specific currency pair
at a specified Band and Volume. The Subscription Manager module also allows for personalized
Update Rates so that each client can receive the data they subscribed for at their desired rate. In the
sample, the Client Subscription Preferences are specified in the initial_subscription_preferences.csv
file and the initial Client Subscription Requests are specified in the initial_subscriptions.csv file.
Both files are located in the init_files folder. New Client Subscription Requests to the Market
Simulator are automatically sent to the Client Subscription Manager module as well. Note that in
practice the Client Subscription Preferences can be assigned via an input stream and need not be
fixed.

Execution Manager
The Execution Manager module tracks current market prices for currency pairs at various Bands
and Volumes against the price of an executed order. The Execution Manager reads executed orders
from the Executions table in the ExecutionSimulator module and calculates real time
Profit/Loss(PL) using prices generated in the Custom Spreads table in the Custom Spread Calculator
module.

FX Setup
In the accelerator, the FX Setup module initializes module parameters, subscription requests, and
executions from CSV files located in the init_files folder.

8

	Introduction
	Introduction
	Running The FX Dealing Accelerator
	FX Pricing Using VWAP Trading Components Sample
	Live Datamart Table Schemas
	FX Dealing Sample User Interface
	Market Simulator
	Execution Simulator
	FX Price Aggregation
	Volume Weighted Average Price
	Mid Price Calculator
	Custom Spread Calculator
	Subscription Manager
	Execution Manager
	FX Setup

